rotary scissors - vertaling naar russisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

rotary scissors - vertaling naar russisch

ONE OF TWENTY-THREE, ASKING WHETHER ONE POLYHEDRA CAN BE CUT AND REASSEMBLED INTO ANOTHER
Scissors congruence; Scissors-congruent
  • Two polyhedra of equal volume, cut into two pieces which can be reassembled into either polyhedron

rotary scissors      
дисковые ножницы
scissor         
  • 150x150px
  • 150x150px
  • 150px
  • 150px
  • 150px
  • 150px
  • 150px
  • Classic Italian-style kitchen scissors, often used to cut food. The two halves can be detached in order to be cleaned.
  • 100px
  • 150px
  • 80px
  • 150px
  • 150px
  • 150px
  • 150px
  • 150px
  • 150px
  • 150px
  • 150px
  • 150px
  • 150px
  • 150px
  • 150px
  • Left-handed (left) and right-handed (right) sidebent scissors
  • 150px
  • 150px
  • url-status=live }}</ref>
  • 150x150px
  • 150px
  • 150px
  • 150x150px
  • 150px
  • 150px
  • [[Han dynasty]] scissors
HAND-OPERATED CUTTING INSTRUMENT
Scissor; Sissors; Kitchen scissors; Kitchen shears; Poultry shears; Pair of scissors; ✄; ✂; A Pair of Scissors; Pair of Scissors; ✁; ✃; Nail scissors; Bone scissors; Undermining scissor; Undermining scissors; ✀; Ceremonial scissors; ✂️
резальное устройство, работающее по принципу ножниц; pl ножницы || резать ножницами
scissor         
  • 150x150px
  • 150x150px
  • 150px
  • 150px
  • 150px
  • 150px
  • 150px
  • Classic Italian-style kitchen scissors, often used to cut food. The two halves can be detached in order to be cleaned.
  • 100px
  • 150px
  • 80px
  • 150px
  • 150px
  • 150px
  • 150px
  • 150px
  • 150px
  • 150px
  • 150px
  • 150px
  • 150px
  • 150px
  • 150px
  • Left-handed (left) and right-handed (right) sidebent scissors
  • 150px
  • 150px
  • url-status=live }}</ref>
  • 150x150px
  • 150px
  • 150px
  • 150x150px
  • 150px
  • 150px
  • [[Han dynasty]] scissors
HAND-OPERATED CUTTING INSTRUMENT
Scissor; Sissors; Kitchen scissors; Kitchen shears; Poultry shears; Pair of scissors; ✄; ✂; A Pair of Scissors; Pair of Scissors; ✁; ✃; Nail scissors; Bone scissors; Undermining scissor; Undermining scissors; ✀; Ceremonial scissors; ✂️

['sizə]

общая лексика

резать ножницами

глагол

общая лексика

вырезать ножницами

разговорное выражение

резать ножницами

Definitie

scissors
¦ plural noun
1. (also a pair of scissors) an instrument used for cutting cloth and paper, consisting of two crossing blades pivoted in the middle and operated by thumb and fingers inserted in rings at each end.
2. (also scissor) [as modifier] denoting an action in which two things cross each other or open and close like a pair of scissors: a scissor kick.
Origin
ME: from OFr. cisoires, from late L. cisoria, plural of cisorium 'cutting instrument'; the sc- spelling arose by assoc. with the L. stem sciss- 'cut'.

Wikipedia

Hilbert's third problem

The third of Hilbert's list of mathematical problems, presented in 1900, was the first to be solved. The problem is related to the following question: given any two polyhedra of equal volume, is it always possible to cut the first into finitely many polyhedral pieces which can be reassembled to yield the second? Based on earlier writings by Carl Friedrich Gauss, David Hilbert conjectured that this is not always possible. This was confirmed within the year by his student Max Dehn, who proved that the answer in general is "no" by producing a counterexample.

The answer for the analogous question about polygons in 2 dimensions is "yes" and had been known for a long time; this is the Wallace–Bolyai–Gerwien theorem.

Unknown to Hilbert and Dehn, Hilbert's third problem was also proposed independently by Władysław Kretkowski for a math contest of 1882 by the Academy of Arts and Sciences of Kraków, and was solved by Ludwik Antoni Birkenmajer with a different method than Dehn's. Birkenmajer did not publish the result, and the original manuscript containing his solution was rediscovered years later.

Vertaling van &#39rotary scissors&#39 naar Russisch